Selecting Parameter Values for Mahalanobis Distance Fuzzy Classifiers
نویسندگان
چکیده
منابع مشابه
Fuzzy Possibility C-Mean Based on Mahalanobis Distance and Separable Criterion
The well known fuzzy partition clustering algorithms are most based on Euclidean distance function, which can only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-Geva (GG) clustering algorithm, were developed to detect non-spherical structural clusters, but both of them based on semi-supervised Mahalanobis distance needed additional prior in...
متن کاملAn investigation on scaling parameter and distance metrics in semi-supervised Fuzzy c-means
The scaling parameter α helps maintain a balance between supervised and unsupervised learning in semi-supervised Fuzzy c-Means (ssFCM). In this study, we investigated the effects of different α values, 0.1, 0.5, 1 and 10 in Pedrycz and Waletsky’s ssFCM with various amounts of labelled data, 10%, 20%, 30%, 40%, 50% and 60% and three distance metrics, Euclidean, Mahalanobis and kernel-based on th...
متن کاملA study of parameter values for a Mahalanobis Distance fuzzy classifier
The fuzzy c-means clustering algorithm (and a supervised classiier based on it) requires the a priori selection of a weighting parameter called the fuzzy exponent (denoted m). Guidance in the existing literature on an appropriate value of m is not deenitive. This paper determines suitable values of m by using the criterion that fuzzy set memberships reeect class proportions in the mixed pixels ...
متن کاملValues for the Fuzzy -means Classifier in Change Detection for Remote Sensing
We discuss an approach to change detection in digital remotely sensed imagery that relies on the Fuzzy Post Classification Comparison technique. We use the fuzzy -means classifier together with the Mahalanobis distance as the basis for a metric of class membership for a individual pixel. We note that the value of the fuzzy exponent in a fuzzy classifier is based on the ratios of the reciprocals...
متن کاملApplying the Mahalanobis-Taguchi System to Vehicle Ride
The Mahalanobis Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. The Mahalanobis Taguchi System is of interest because of its reported accuracy in forecasting small, correlated data sets. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001